МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

«МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ СТРОИТЕЛЬНЫЙ УНИВЕРСИТЕТ»

(Национальный исследовательский университет)

Кафедра информатики и прикладной математики

РАБОЧАЯ ТЕТРАДЬ

для выполнения лабораторных и практических работ по дисциплине «Информатика»

Часть 1

Элементы программирования на алгоритмическом языке

Студент	 	
Институт		
Курс	 · · · · · · · · · · · · · · · · · · ·	
Группа	 	
Преподаватель		

Результаты сдачи контрольных мероприятий студентом						
Контрольное мероприятие	Преподаватель	Отметка о зачете	Подпись			
Лабораторная работа 1						
Лабораторная работа 2						
Лабораторная работа 3						
Лабораторная работа 4						
Лабораторная работа 5						
Лабораторная работа 6						
Контрольное задание 1						
Контрольное задание 2						
ЗАЧЕТ						

Рабочая тетрадь предназначена для студентов институтов МГСУ, изучающих алгоритмические языки в курсе «Информатика». В рабочей тетради представлены шесть лабораторных работ, как правило, выполняемых студентами в рамках изучения курса. Приведены формы для оформления результатов ручного счета, программ и результатов выполнения работы на ЭВМ.

Принятые в заданиях номера факультетов МГСУ

Ф-тет	ПГС	ТЭС	ГС	CT	ГСХ	МиАС	ЭУИС	ВиВ	ТиВ	ИФО	ИСТАС	ИАФ	ЖОМИ	ИЖКК
К	1	2	3	4	5	6	7	8	9	10	11	12	13	14

Составители:

заведующий кафедрой, чл.-корр. РААСН, доктор технических наук П.А. Акимов профессор, чл.-корр. РААСН, доктор технических наук А.М. Белостоцкий профессор, кандидат технических наук Ж.И. Мсхалая профессор, кандидат физико-математических наук Ю.В. Осипов профессор, советник РААСН, доктор технических наук В.Н. Сидоров

Рецензент

профессор доктор физико-математических наук В.Н. Варапаев

Лабораторная работа № 1.

Часть 1. Запись арифметических выражений на алгоритмическом языке.

Задание. Записать на алгоритмическом языке следующие арифметические выражения.

	1		
) z ^{5y}	2)	$\sqrt{e^{\sin x} + 1} - \cos^3 \frac{x}{3}$
1.	$) \frac{5.2x}{2 y } - \frac{4\ln x^2}{5 \operatorname{tg} x}$	4)	$\frac{\arctan \frac{3}{\sqrt{x+1}}}{x+1,3} + 3^x$
1	$x^{y^z} + 0.3y$	2)	$\sqrt[5]{\ln^2 x + 1} + 4e^{\sin x}$
	$1 + x + \frac{x^2 + \sqrt{x+1}}{2 \cdot 3x}$	4)	$\cos^3 x^2 + \frac{\arcsin x^2}{1 + \frac{x}{x+1}}$
	$(x^y)^{tz}-e^{3x}$	2)	$\sqrt{0.3tx} + \operatorname{ctg}^2 \frac{x}{2}$
	$\int_{0}^{7} \sqrt{\frac{x+3}{3x}} + \cos^3 5x$	4)	$\frac{8 xy }{3tz} - \ln^3(x+1)$
	$z^{3x} + 3x^z - 0.3$	2)	$\sqrt{\ln\left \sin^3x\right +1}-e^{-x}$
4.	$) \frac{0.3\cos^2 x^2 + 1}{2xy} + 6$	4)	$\frac{\arctan 2x+7}{x+4,2} + \sqrt[3]{x}$
	$\int z^{3x^5} + \ln^2(x+1)$		$\sin^2 x + \arccos\sqrt[3]{x+1,2}$
5.	$\frac{x + 3yt - 4}{0,3xyt} + e^{x-1}$	4)	$\frac{\text{ctg}3x - 7,2}{x + 1} - \sqrt{x + 0,2}$
1	$x^{x^x} + (x^x)^x + 0.04$	2)	$e^{3x^2+4} - x ^3 + \ln^2 x$
6.	$\int_{0}^{3} \sqrt{\frac{x+1}{x-1}} + \arcsin\sqrt{x}$	4)	$\frac{x+5-3y}{3xyz} + tg^3x^2$
1	$(y^{2z})^3 + \ln^3(x+1)$	2)	$\frac{x}{2} + \cos^3 x^3 - e^{-3x}$
7. 3	$\frac{x + 2(x - 1)^2}{3xt} - \sqrt{\sin\frac{x}{3,3}}$	4)	$\frac{\arctan \frac{3\sqrt{x}-5}{ x -\frac{x}{x+1}}-3,7y}{ x -\frac{x}{x+1}}$
	$y^{3^x} - x^3 + e^{\frac{-x}{3}}$	2)	$e^{x^2 - 1} - 2\ln x + 1 - \frac{3}{xy}$
8.	$0.8 \left(\sin^2 \frac{x}{3} - \frac{x+2}{x+1} \right)^3$	4)	$\frac{\cos^3 3x^2 + \sqrt{x}}{x + 4y} - \sqrt[3]{\frac{x+1}{x-1}}$

1)
$$4^{x^2} + \sin^2 \frac{3x}{7y} + 0,3$$
 2) $\ln^2 x - |\cos(x+3)|$
9. $\frac{\arcsin^3 x + 1 - x}{3x}$ 4) $\frac{\sqrt{x} + \sqrt[3]{x-1} + e^{-3x}}{x+3,5x^2}$
1) $(x^y)^3 (y^x)^2 + 0,7$ 2) $\sqrt{x} \sin^2 x + \cos \frac{x^2}{2}$
10. $\frac{|x| - \ln(x+1)}{e^{-x} + 4,7x}$ 4) $\frac{\sqrt[3]{x+7-4y}}{5xy} + \arctan \frac{x+7}{x-4}$
11. $(x^2)^{y^2} - e^{-y} + 7,3$ 2) $\sqrt{\ln^2 x + 1} - 3\cos^7 x + 4$
11. 3 $5 - \frac{|x| + \sqrt[3]{x}}{3 - \frac{x}{1+\frac{x+1}{x}}}$ 4) $\frac{x^2 + 3}{x+2} - e^x \left(\frac{x-1}{x} + 1\right)^4$
11. $x^{y^2+4} - e^{-3x}$ 2) $2\sin^2 \frac{x}{2} - \sin^3 \sqrt{x}$
12. $\frac{\ln^3 |x| + 4xy}{5xy}$ 4) $\frac{\arccos x - 7 \ln x^2}{x+7,3}$
13. $\frac{\ln^3 |x| + 4xy}{3\sqrt[3]{x}}$ 4) $\frac{\sin(x+2) \ln 3y}{x^4 + 1,3\cos 3x} + 7$
13. $\frac{3\sqrt[3]{x} \frac{\sin x^2 - \sqrt{x-1}}{3xy}}{3xy}$ 4) $\frac{\sin(x+2) \ln 3y}{x^4 + 1,3\cos 3x} + 7$
1) $3^{2x^2} - \ln |x| + 0,9$ 2) $2\ln^2 x^2 - 3\sin^3 3x$
1) $3^{2x^2} - \ln |x| + 0,9$ 2) $2\ln^2 x^2 - 3\sin^3 3x$
14. $\frac{e^{-3x} + \ln \cos \frac{x}{2}}{25x}$ 4) $\frac{\sqrt[3]{x+1} - \sqrt{x-3,7}}{\arctan (3x)}$ 4) $\frac{\sqrt[3]{x+1} - \sqrt{x-3,7}}{\arctan (3x)}$ 1) $\frac{5^{2xy} - x^{5x} - e^{-x^2}}{25x}$ 2) $\sqrt[3]{x+4} - \cot^2 \frac{xy}{3y+1}$ 15. $\sqrt[3]{\cos^2 x + \sin x^2}}{35xt}$ 4) $\frac{|x| + 1}{3 \cdot 2} + \frac{e^{-3x} - 0,4}{5 + 7y}$

1)
$$x^{2y} - \cos^3 3x - 7.9$$

2)
$$2\cos^2|x| - 3\sin^2 x^3 + 4$$

16. 3)
$$\frac{1-x}{1+x} - 1,6x^3 \sqrt[3]{x+7}$$
 4) $\frac{\arctan \frac{x}{y} - \sqrt{\sin^2 x + x}}{x^2 + 7xy}$

1)
$$x^{2z^t} + (x^{2z})^t + x^{t^{2z}}$$

2)
$$2\sin^5 2x^2 + e^{3\cos x} - 7$$

17. 3)
$$\frac{5xyz}{4 \cdot 3 \cdot 2} + |x|^{3t}$$

4)
$$\frac{\left|\ln(x^4+3)\right|-\operatorname{tg}\frac{x}{2}}{3x-4y}$$

1)
$$x^{yz} + z^{xy} + y^{z^x}$$

$$3x - 4y$$
2) $e^{a-b} + (\sin(x+2) - 4,3)^2$

18. 3)
$$\frac{\sin x + 2}{\tan^2 x + |x - 1|}$$

4)
$$\frac{\arcsin(b-a)^3 + \ln^2 x^2}{3abc}$$

1)
$$x^y z^{2v} + e^{-3u} + 7^{2x}$$

$$2) \quad \ln^2 \cos x + |x| - \operatorname{arctg} \frac{x}{3y}$$

19.
$$\frac{2x + \sqrt{x+4} - 0.3\sin x^{2}}{3\sqrt[3]{x-2} \cdot 2xy}$$
1)
$$(z^{x})^{2y} + (2^{y})^{2x}$$

4)
$$\frac{\sqrt[5]{x}\sin^3(x+4) - 3|x|}{x^2 - 3x^3}$$
2)
$$3\cos^2\frac{x}{2} + \sqrt{e^{-x} + 2z^2}$$

1)
$$(z^x)^{2y} + (2^y)^{2x}$$

2)
$$3\cos^2\frac{x}{2} + \sqrt{e^{-x} + 2z^2}$$

20. 3)
$$\frac{x^2}{2 \cdot 3 \cdot 4} + \frac{\sqrt[7]{x-4}}{\sin^2 x + 1}$$

4)
$$x + \frac{x^2 + \ln^2 x + 0.3}{x + \frac{x^2}{x + 1}}$$

1)
$$x^{y^2x^2} + 3^x + x^3 - e^{\frac{x^2}{2}}$$

$$\frac{x+1}{2) \sqrt{\cos^2 \frac{x}{2} + 3 - e^{\sin^2 x - 1}}$$

21.
$$\frac{1 + \ln(x+1)}{2 + \frac{x}{3 + \frac{x}{4}}} - 3,75x$$
1)
$$(x^{yz})^{t} - 3^{a} + 7e^{-\frac{b}{a}}$$

4)
$$\frac{2,1\sqrt[3]{x} + \left|\cos^3 x^2\right|}{3xy}$$

1)
$$(x^{yz})^t - 3^a + 7e^{-\frac{b}{a}}$$

2)
$$\sqrt{\cos^2 x^3 + 2} + e^{\sin x + \text{tg}x}$$

22. 3)
$$\frac{x^2}{2 \cdot 4 \cdot 6} - \frac{x^3 y + 2\sin x}{3|x| + \ln^2 x}$$

4)
$$\frac{3\sqrt[3]{x+1} \operatorname{tg7}(x+6)}{2 + \frac{x^3}{4,3}}$$

1)
$$x^{yzt} + 7xy - e^{-3t}$$

2)
$$\ln^3(x+\sqrt{x})-\sin(x-2)$$

23. 3)
$$-3\left(\cos\frac{x}{2} + \frac{x-1}{x+2}\right)^3$$

4)
$$\frac{\sqrt{x+4} - \sqrt[3]{(x+9)^2}}{\left|3 - x\right| + 7tg^3 \frac{x}{2}}$$

1)
$$x^{2yz} - e^{-\sin^2 x^2}$$

2)
$$2\ln^3 x - 3\cos^4 \frac{x}{3}$$

24. 3)
$$\frac{x^3 \sqrt[3]{x} + |x - 1|}{2 - xyz}$$

4)
$$\sqrt{\frac{x^2 + 7x - 9.3a}{a^2 + b^2 + c^2}}$$

1)
$$z^{3}y^{x^{4}} + z^{3,y} - e^{\frac{x^{2}}{2}}$$
 2) $\sqrt{|x^{3} - 1|} + \sqrt[3]{\sin^{2}x} + 1$ 25. 3) $5.7 + \frac{\ln x + tg \ln 3x}{4ab}$ 4) $\frac{|a^{2} - b^{2}| + 4\arcsin x}{3x - 7ab}$ 2) $\sqrt{x^{2} + 1} + \arcsin^{2} \ln |x|$ 26. 3) $\sqrt[5]{\frac{x + 4y}{3x} - \frac{x + 2}{2\sin x}}$ 4) $\frac{\sin^{3} 2x + 3\cos^{2}e^{-x}}{x + 5ctgx}$ 2) $\sqrt[3]{3 + 2\cos x^{2}} + \ln^{3}\frac{x}{2}$ 27. 3) $x\left(\frac{x - 1}{x + 4}\right) + \sqrt{e^{x^{2}} - 1}$ 4) $1.6\frac{\cos^{3} x + \arctan tg 3x}{4xy}$ 29. 3) $\frac{x}{5y} - \frac{\ln(2 - e^{x})}{3x + x - 3y}$ 4) $\frac{x}{3} + \frac{x + \sqrt{x^{2} + 1}}{\arcsin 3x - 0.6}$ 20. 3) $\frac{x}{5y} - \frac{\ln(2 - e^{x})}{3 + x - 3y}$ 4) $\frac{x + \sqrt{x^{2} + 1}}{3\arcsin 3x - 0.6}$ 20. 4) $\frac{x}{3} + \frac{x + \sqrt{x^{2} + 1}}{3x^{2} + \sqrt{x - 1}}$ 20. 3) $\frac{1 + \arctan tgx}{2 \cdot 3 \cdot 6} - \frac{7.2}{x + y}$ 4) $\frac{3\sqrt{x + \cos^{2} x - 7a^{x + 4}}}{3x^{2} + \sqrt{x - 1}}$ 20. 4) $\frac{3\sqrt{x + \cos^{2} x - 7a^{x + 4}}}{3x^{2} + \sqrt{x - 1}}$ 20. 3) $\frac{x^{2} + \sin^{2} x^{3} - 4.3}{2x + 8ab^{3}\sqrt{z}}$ 4) $\frac{3(x + \sqrt{x^{2} + 1})}{32a}$ 30. 3) $\frac{\sqrt{x^{2} + \sin^{2} x^{3}} - 4.3}{2x + 8ab^{3}\sqrt{z}}$ 4) $\frac{3xy - 6\sin(x - 2)}{\arccos 2x}$ 31. 3) $\frac{\sqrt[3]{x^{4} - 1} + \sqrt{x + 1}}{6xyz}$ 4) $\frac{3xy - 6\sin(x - 2)}{\arccos 2x}$ 31. 3) $\frac{\sqrt[3]{x^{4} - 1} + \sqrt{x + 1}}{6xyz}$ 4) $\frac{1 - x}{x + 3} - \arctan tg^{2}|x| + 6.9$ 32. 3) $\frac{\arctan tgx}{\sqrt[3]{x} + x^{3}}$ 4) $\frac{1 - x}{x + 3} - \arctan tg^{2}|x| + 6.9$ 32. 3) $\frac{\arctan tgx}{\sqrt[3]{x} + x^{3}}$ 4) $\frac{\arctan tgx}{\sqrt[3]{x} + x^{3}}$ 4) $\frac{e^{-(x + 1)} + y^{z - 1} + \ln^{2}(x + 2)}{\sqrt[3]{x} + x^{3}}$ 4) $\frac{\operatorname{tr}(tx)}{\sqrt[3]{x} + x^{3}}$ 4) $\frac{\operatorname{tr}(tx)}{\sqrt[3]$

1)
$$\sqrt{x-2}\sin x^2 + tg\frac{x}{3}$$

$$2) \quad \left(\frac{x-1}{y+4,3}\right)^4 + \sqrt[7]{\frac{x}{3y}}$$

3) $\ln^2(y-5) - \sin^2 2x + (xz)^y$

4) $\frac{\arcsin(y-6)}{\cot y}$

1)
$$(x^y)^x + x^{x^y} - x^4$$

2)
$$\sqrt[3]{|ctg y + 6|} + \sqrt{\frac{(x+1)^3}{4y - 2z}}$$

34.

3)
$$\frac{5xy}{x^3-4} + e^{x^2} + \sqrt{\cos^2 y - y^2}$$

4)
$$\sqrt{|y|} + \frac{arctg^3 \ln x}{x^y - y + 1}$$

1)
$$4^{xy} - x^{yz} + (xy)^z$$

$$2) \quad \frac{4|x| - xyz^2}{x + e^{yx} - 2yz}$$

35.

3)
$$\sqrt[5]{\frac{1-x+arcctg(x-7y)}{4xz-\ln^2 y}}$$

4)
$$\frac{2 \cdot 3 \cdot 4}{\sin^3 x + tg^3 y} - \sqrt{z^{x-y}}$$

1)
$$\frac{\ln(x-3)^4 + 2^x \sin^2 3x}{4x - 5.2}$$

2)
$$\sqrt{0.6xyz} + (y^x)^2 - e^{\sin 2x^2}$$

36.

$$3) \quad \frac{\arcsin x^3 - 6}{8(\cos 4y - \sin 4x)}$$

4)
$$\frac{\left|\ln x^{3}\right| + e^{2x}}{x + 3,4} - ctg^{3} \frac{3}{xyz}$$

Выполнение лабораторной работы

Вариант №_____

1.	
2.	
3.	
4.	

Лабораторная работа № 1. Часть 1	Фамилия И. О.	Дата	Подпись
Работу выполнил:	Студент		
Выполнение на ЭВМ:	Преподаватель		
Ручной счет:	Преподаватель		

Часть 2. Программирование формул.

Задание. Вычислить на ЭВМ выражение. В скобках указаны значения исходных данных для отладки и ручного счета.

1.
$$\frac{\cos^3 x + 3y}{1 + 2x + 3y}$$
, $z\partial e \ x = s_2 \cdot 4t$; $y = s_2/t$ $(s_2 = 12; t = 3)$

2. $\frac{u^{-v} + \sqrt{u^4 + v^2}}{3u + v + 1}$, $z\partial e \ u = a_4 + a_4b$; $v = 2a_4b$ $a_4 = 1; b = 0$)

3. $\frac{\cos^3 t - r}{5t + 2r}$, $z\partial e \ t = 4x_2 \cdot y/x_2$; $r = x_2 + y$ $(x_2 = 1; y = 4)$

4. $\frac{(w - 4p)(p^2 - w)}{3w + 4p}$, $z\partial e \ p = v_2 t g u$; $w = u + 3v_2$ $(u = 0; v_2 = 6)$

5. $\frac{\ln |x^2 - 3| - 4y}{x^2 + 1}$, $z\partial e \ x = 2ab_5$; $y = 5a - 8b_5$ $(a = 1; b_5 = 1)$

6. $\frac{\sin \alpha + 3e^{-x}}{1 + tg^2\alpha}$, $z\partial e \ \alpha = u_2 + v$; $s = 2u_2$ $(u_2 = 0; s = 0)$

7. $\frac{\cos \beta - e^{-t}}{t + 2\beta t}$, $z\partial e \ \beta = u_2 \cdot v$; $t = u_2 v - 1$ $(u_2 = 3; v = 3)$

8. $\frac{\sqrt[3]{\cos x + 7 + 4}}{5x + t}$, $z\partial e \ x = g_1 + 3h_2$; $t = \cos^2(2g_1 - 6h_2)$ $(g_1 = 3; h_2 = 1)$

9. $\frac{\sqrt{a^2 + |b| - 1}}{|a| + |b|}$, $z\partial e \ a = \cos t + s_1$; $b = 6t - 3s_1$ $(t = 0; s_1 = 5)$

10. $\frac{\sqrt[3]{|u| + 2v}}{\cos^3 v + 3u}$, $z\partial e \ u = 9x - y_5$; $v = arctg \ y_5$ $(x = 3; y_5 = 0)$

11. $\frac{2\cos^3 \alpha + 3y}{2 + 3y}$, $z\partial e \ \alpha = s - 4t_2$; $y = s/t_2$ $(s = 4; t_2 = 1)$

12. $\frac{ue^{-v} + \sqrt{u^2 + 3v^2}}{1 + |4u + v|}$, $z\partial e \ u = \alpha + 4\beta_1$; $v = 2\alpha$ $(\alpha = 0; \beta_1 = 1)$

13. $\frac{\cos^3 t - s}{5t + 2s}$, $z\partial e \ t = 4x_2 - y/x_2$; $s = x_2 + y$ $(x_2 = 1; y = 4)$

14. $\frac{(\beta - 4p)(p^2 - \beta)}{3\beta + 4p}$, $z\partial e \ p = v t g u_5$; $\beta = u_5 + 3v$ $(u_5 = 0; v = 1)$

15. $\frac{\ln(x^2 + 1) - 4u}{x^2 + 2}$, $z\partial e \ x = 2ab_4$; $u = 5a - 8b_4$ $(a = 0; b_4 = 1)$

16. $\frac{\sin 2x + 3e^{-v}}{1 + arctg^2 4x}$, $z\partial e \ x = u + v_1$; $s = 2u$ $(u = 0; v_1 = 0)$

17. $\frac{2\cos^3 t - s}{t + 2y + 1}$, $z\partial e \ x = u + v_1$; $s = 2u$ $(u = 0; v_1 = 0)$

Вариант №_____

(e
лгоритм и ручной счет.
Вычисляем
Вычисляем
Вычисляем
Текст программы

Лабораторная работа № 1. Часть 2	Фамилия И. О.	Дата	Подпись
Работу выполнил:	Студент		
Выполнение на ЭВМ:	Преподаватель		
Ручной счет:	Преподаватель		

Часть 3. Вычисление корней квадратного уравнения.

 $\it 3adahue.$ Найти корни квадратного уравнения при различных значениях параметра $\it t.$

Варианты заданий

1. $(t-2)x^2 + 2tx + t + 5 = 0$	$2. (t+3)x^2 + 4tx + 2t + 10 = 0$
3. $(2t+5)x^2 - 2tx + 2t - 7 = 0$	4. $(t-3)x^2 - 2(3t-4)x + 7t - 6 = 0$
5. $(t+5)x^2 - 3tx + (t+4) = 0$	6. $(t+4)x^2 + tx + 3t - 10 = 0$
7. $(2t+1)x^2 - 3tx + t - 6 = 0$	8. $(2t-4)x^2 + 2(t-1)x + 3t = 0$
9. $tx^2 - (2t - 3)x + (t - 10) = 0$	10. $(t+1)x^2 - 3tx + 5t - 2 = 0$
11. $3tx^2 - (t-4)x + t - 5 = 0$	12. $(t-4)x^2 + (t-1)x + t + 3 = 0$
13. $(t+1)x^2 + 2tx + t - 2 = 0$	14. $2tx^2 - (4t - 1)x + t + 3 = 0$
15. $(t-5)x^2 - 3tx + 2(t-3) = 0$	16. $tx^2 - 3(t-1)x + t + 4 = 0$
17. $(3t-6)x^2 - tx + 2(t-6) = 0$	18. $(2t+1)x^2 - (t-3)x + t + 2 = 0$
19. $(t+2)x^2 + 3tx - (t-3) = 0$	$20. (t-4)x^2 + 4tx + t - 5 = 0$
21. $2tx^2 + (3t - 1)x + (t - 5) = 0$	22. $2(t+1)x^2 - 3(t-2)x + 2t = 0$
23. $2(t-1)x^2 + 3tx + 2t + 3 = 0$	$24. 2tx^2 + (3t - 2)x - (2t - 3) = 0$
25. $tx^2 + (t+1)x + 2t - 5 = 0$	$26. (t-3)x^2 - 5tx + 3(t-1) = 0$
27. $(t+1)x^2 - 4tx + 3t + 1 = 0$	28. $(t-2)x^2 + (4t-1)x + 3t - 5 = 0$
29. $3tx^2 - 2(t-1)x + 3(t-1) = 0$	$30. \ 2(t+1)x^2 + 3tx - (2t-3) = 0$
31. $(2t-3)x^2 - 7tx + t - 2 = 0$	32. $(t-6)x^2 + (8t-1)x + t - 4 = 0$
33. $(t+2)x^2 - (t-1)x + (t-3) = 0$	$34. (t+7)x^2 + 4tx + 2t - 1 = 0$
$35. (2t+3)x^2 - 4tx + 2t = 0$	$36. \ 2(t+1)x^2 - tx - t + 2 = 0$

Примечание. Значения параметра t подобрать так, чтобы уравнение:

- не имело действительных корней;
- имело два различных действительных корня;
- имело один действительный корень, т.е. вырождалось в линейное уравнение.

Вариант №_____

a =	h-	c^{-}
α	$\nu-$	c —

_	1	
-		
<u> </u>	l	

•	при t =
•	при t =

•	при $t = _{-}$	
	-	

Лабораторная работа № 1. Часть 3	Фамилия И. О.	Дата	Подпись
Работу выполнил:	Студент		
Выполнение на ЭВМ:	Преподаватель		
Ручной счет:	Преподаватель		

Лабораторная работа № 2.

Часть 1. Запись логических выражений на алгоритмическом языке.

Задание. Записать логическое выражение принадлежности точки заданному интервалу.

1	a) $x \in [2;10);$	2.	a) $x \in [-20; -10];$
1.	$6) x \in (-10; 3] \cup [7; 20).$	۷.	$6) x \in (-3; -1] \cup [0; 15].$
2	a) $x \in [-2;10);$	4	a) $x \in [-1;7);$
3.	б) x ∈ (-20;-7] \cup [-2;10].	4.	$6) x \in (-10; -3] \cup [0;13].$
	a) $x \in (-3;5];$		a) $x \in (5;10)$;
5.	6) x ∈ [-13; -2) \bigcup [7;10].	6.	6) x ∈ [-5; -1] \bigcup [3;8).
7	a) $x \in [-4;5);$	0	a) $x \in (-3;0)$;
7.	6) x ∈ $(-7; 0]$ \bigcup $(5;12)$.	8.	$6) x \in [3; 6] \cup (10; 20).$
0	a) $x \in [-18; -5];$	10	a) $x \in [-5;13);$
9.	6) x ∈ [-5; 3) \bigcup [6;15].	10.	$6) x \in (-8, 2] \cup (3, 10).$
11	a) $x \in [-30; -10);$	10	a) $x \in [10;30)$;
11.	6) x ∈ $(-10; -5]$ $\cup [-2; 2]$.	12.	$6) x \in (-5; 2] \cup (12; 19).$
12	a) $x \in [-2;3];$	1 /	a) $x \in (5;8);$
13.	δ) <i>x</i> ∈ [-10; 0) \bigcup [3;15].	14.	6) x ∈ [-15;-5) \bigcup [-3;15].
1.5	a) $x \in (-12;10];$	16.	a) $x \in [-7;10)$;
15.	6) x ∈ $(-10; -2)$ \cup $[4;8)$.		6) x ∈ [-11;-5) \bigcup (1;2).
17	a) $x \in [-10; -2);$	10	a) $x \in [-2;14];$
17.	6) x ∈ [-6; 3] \bigcup [10;15].	18.	$6) x \in [3; 5] \cup (10; 20).$
10	a) $x \in (3;15)$;	20	a) $x \in [-2;5);$
19.	б) x ∈ [-10; -1] \bigcup [17;30).	20.	$6) x \in (-10; -3) \cup [9; 22].$
21	a) $x \in (-5;10)$;	22	a) $x \in [-15;1];$
21.	б) x ∈ $(-10; -3]$ \cup $[5;23]$.	22.	$6) x \in [-9; -2) \cup (6;15].$
22	a) $x \in [-4;10)$;	24.	a) $x \in [2;20);$
23.	6) x ∈ [-1; 3) \bigcup [7;9).	24.	6) x ∈ (-13;-5] \cup [-3;2].
25	a) $x \in (-6;-1];$	26	a) $x \in (-5, 20)$;
25.	б) x ∈ [-8; 3] \bigcup (10;15).	26.	$6) x \in (-1; 3] \cup (7; 13].$
27	a) $x \in [-21; -3);$	20	a) $x \in [-6;1];$
27.	6) $x \in [-1; 1] \cup (2; 10]$.	28.	$6) x \in (-20; -4) \cup [0;15).$
20	a) $x \in [4;10)$;	20	a) $x \in [8;13];$
29.	δ) <i>x</i> ∈ (−12; 3) \bigcup [5;13).	30.	6) $x \in (-15; -8) \cup [-2;2)$.

31. a) $x \in [-8; -2];$	32. a) $x \in (1;12)$;
b) $x \in (-20; -1] \cup [2;6).$	6) $x \in [-2;1) \cup [-10;-3)$.
33. $a) x \in [3;20);$	34. a) $x \in (2;10];$
$b) x \in (-8;-3) \cup [0;2].$	$6) x \in [-12;0) \cup (2;12].$
35. $a) x \in [1;2];$	36. $a) x \in [-6; 6];$
$b) x \in (-3;-2) \cup (2;3).$	$b) x \in (-10; 10] \cup [12; 20].$

Ba	риант	Ŋoౖ			

3	апись	на	алгоритмическом языке:	
---	-------	----	------------------------	--

a)	
б)	

Лабораторная работа № 2. Часть 1	Фамилия И. О.	Дата	Подпись
Работу выполнил:	Студент		
Выполнение на ЭВМ:	Преподаватель		
Ручной счет:	Преподаватель		

Часть 2. Ветвящиеся алгоритмы

- 1. Найти максимальное из двух чисел x,y и заменить минимальное нулем: $u = \max\{x,y\}; \min\{x,y\} = 0$. Напечатать значения x,y и u.
- 2. Присвоить переменной и значение, равное сумме двух наибольших из трех чисел x,y,z. Напечатать значение u.
- 3. Заменить наименьшее из трех чисел х,у, и нулем и напечатать все три числа.
- 4. Найти и напечатать z, если $z=\max\{x,y\}$ при x<0 и $z=\min\{x,y\}$ при $x\ge 0$.
- 5. Найти и напечатать z, если $z=min\{x,y\}+0.5$.
- 6. Найти и напечатать и и v, если $u=\max\{x,y\}$; $v=\min\{x,y\}$.
- 7. Найти и напечатать u, если $u = min\{x+y,xy\}$.
- 8. Даны значения трех переменных x,y,z. Найти u, если u=1, при $x\geq 0$ и $y\geq 0$ и $z\geq 0$; u=0, при x<0 или y<0 или z<0. Напечатать x,y,z,u.

- 9. Найти и напечатать u, если $u=\max\{x+y+z,xyz\}$.
- 10. Найти и напечатать u, если $u = min\{x, max\{y,z\}\}$.
- 11. Найти и напечатать u, если $u=min\{(x+y+z)/3,(x+2y-z)/5\}$.
- 12. Найти и напечатать z, если $z = (\min\{x,y\}+0.5)/\max\{x,y\}$.
- 13. Найти и напечатать u, если $u=\max\{(xy+z)/5, (x+2yz)/3\}$.
- 14. Найти и напечатать u, если $u=1+\min\{(x+y+z)/2,xyz\}$.
- 15. Найти и напечатать u, если $u=min\{x+y,x-3y\}+max\{x+6y,x-y\}$.
- 16. Найти и напечатать u, если $u=2+\max\{(x+2y+3z)/3,\min\{x+y,y+z\}\}$.
- 17. Найти и напечатать u, если u=max $\{5+2x, \min\{y^2, (x+y-z)/5\}\}$.
- 18. Найти и напечатать u, если $u=\max\{xyz, 2x^2+3y\}/\min\{z,x\}$.
- 19. Из трех чисел х,у, выбрать все числа, больше 3 и напечатать, предварительно удвоив их числовые значения.
- 20. Из трех чисел х,у, выбрать все числа, модули которых больше 4 и напечатать их.
- 21. Из трех чисел х,у, выбрать все числа, лежащие вне интервала от 1 до 10 и напечатать их.
- 22. Из трех чисел х,у, выбрать все числа, модули которых меньше 3. Найти их квадраты и напечатать полученные значения.
- 23. Даны три числа х,у,z. Возвести в квадрат те из них, значения которых положительны, и заменить единицами те, значения которых отрицательны. Новые значения х,у,z напечатать.
- 24. Даны три числа x,y,z. Выбрать из них все отрицательные и переменной и присвоить значение суммы их квадратов. Если же все три числа неотрицательные, положить u = 0. Напечатать значение u.
- 25. Даны три числа х,у,z. Вычислить обратные значения тех из них, значения которых не равны нулю, остальные оставить без изменения. Новые значения х,у,z напечатать.
- 26. Даны три числа х,у,z. Найти и вывести на печать число, имеющее максимальное значение по модулю.
- 27. Из трех чисел х,у, и выбрать все положительные числа и напечатать их.
- 28. Из трех чисел х,у, выбрать все отрицательные числа и напечатать их.
- 29. Из трех чисел х,у, г выбрать все числа, больше числа 2 и напечатать их.
- 30. Из трех чисел х,у, г выбрать все числа, меньше числа 2, и напечатать их.
- 31. Из трех чисел x,y,z выбрать все числа, лежащие в интервале (0, 3], и напечатать их.
- 32. Из трех чисел х,у, выбрать все числа, лежащие в интервале [1, 5], и напечатать их.
- 33. Из трех чисел x,y,z выбрать все числа, лежащие вне интервала (-1, 1), и напечатать их.
- 34. Из трех чисел х,у, выбрать все числа, большие 10 или меньшие -10, и напечатать их.
- 35. Из трех чисел х,у, и выбрать те из них, квадраты которых меньше их абсолютного значения, напечатать их.
- 36. Из трех чисел х,у, выбрать те из них, которые делятся на 3 без остатка, напечатать их.

Вариант №_____

\vdash		
1 1		
\vdash		
1 1		
1 1		
1 1		
1 1		
1 1		
1 1		
1 1		
	I.	

Лабораторная работа № 2. Часть 2	Фамилия И. О.	Дата	Подпись
Работу выполнил:	Студент		
Выполнение на ЭВМ:	Преподаватель		
Ручной счет:	Преподаватель		

Лабораторная работа № 3.

Определение наибольшего и наименьшего значения функции на отрезке и построение ее графика.

Задание. Найти наибольшее и наименьшее значение функции f(x) на отрезке [-5;5] и построить график функции на этом отрезке с помощью программы Grapher.

Барианты заоании						
1. $x^4 + 10x^3 + 33x^2 + 40x - 2$	$2. 2x^4 + 16x^3 + 39x^2 + 28x - 5$					
$3. 2x^4 + 8x^3 - 9x^2 - 54x + 1$	$4. 2x^4 + 8x^3 + 3x^2 - 10x + 2$					
$5. x^4 + 2x^3 - 3x^2 - 4x + 3$	6. $2x^4 - 8x^3 + 9x^2 + 54x - 3$					
7. $x^4 - 2x^3 - 3x^2 + 4x - 1$	$8. 2x^4 - 8x^3 + 3x^2 + 10x - 2$					
9. $2x^4 + 16x^3 + 27x^2 - 40x + 4$	10. $x^4 + 6x^3 + 3x^2 - 28x + 3$					
11. $x^4 + 2x^3 - 18x^2 - 54x + 5$	12. $x^4 + 2x^3 - 9x^2 - 20x + 1$					
13. $2x^4 - 21x^3 - 20x^2 + 2$	14. $2x^4 - 12x^3 - 9x^2 + 41x - 4$					
15. $2x^4 - 8x^3 - 9x^2 + 14x - 1$	$16. x^4 - 6x^3 + 3x^2 + 8x - 4$					
17. $x^4 + 6x^3 - 6x^2 - 80x + 5$	$18. \ \ 2x^4 + 8x^3 - 27x^2 - 140x + 8$					
19. $x^4 - 2x^3 - 18x^2 + 54x - 3$	$20. \ \ 2x^4 - 39x^3 - 70x + 4$					
21. $x^4 - 2x^3 - 18x^2 - 16x + 1$	$22. x^4 - 6x^3 + 3x^2 + 28x - 5$					
23. $2x^4 - 16x^3 + 27x^2 + 40x - 4$	$24. x^4 + 6x^3 + 3x^2 - 8x + 1$					
$25. 2x^4 + 8x^3 - 9x^2 - 14x + 2$	$26. \ \ 2x^4 - 21x^2 + 20x - 3$					
$27. x^4 - 2x^3 - 9x^2 + 20x - 1$	$28. x^4 + 4x^3 - 12x^2 - 32x + 7$					
$29. 2x^4 + 4x^3 - 33x^2 - 35x + 2$	$30. 2x^4 - 4x^3 - 33x^2 + 35x - 3$					
31. $x^4 + 8x^3 - x^2 + 10x + 5$	32. $2x^4 - x^3 - x^2 - 2x + 3$					
33. $x^4 + 2x^2 - 2x - 3$	$34. x^4 + x^3 + 6x^2 - x + 9$					
$35. 2x^4 + 4x^3 + 4x^2 + 2x - 5$	$36. x^4 - 10x^2 + x + 1$					

Вариант №_____

Результаты счета						

График функции

Лабораторная работа № 3	Фамилия И. О.	Дата	Подпись
Работу выполнил:	Студент		
Выполнение на ЭВМ:	Преподаватель		
Ручной счет:	Преподаватель		

Лабораторная работа № 4.

Вычисление суммы.

Задание. Вычислить сумму $S = \sum_{k=1}^{n} u_k$, при n=10 для заданных значений x, равных 0.1; 0.3; 0.4; 0.7; 1.0. Результаты напечатать в виде таблицы.

1. $u_k = (-1)^k \frac{x^{2k}}{2k}$	$2. u_k = (-1)^{k+1} \frac{x^{2k+1}}{2k+1}$
3. $u_k = (-1)^k \frac{x^{2k}}{k}$	2. $u_k - (-1) = \frac{1}{2k+1}$ 4. $u_k = (-1)^{k+1} = \frac{x^{k+1}}{k(k+1)}$
5. $u_k = (-1)^{k+1} \frac{x^k}{k}$	6. $u_k = (-1)^k \frac{x^k}{(2k+1)(2k+3)}$
7. $u_k = (-1)^k \frac{x^k}{5^k}$	$8. u_k = (-1)^{k+1} \frac{k^2 x^k}{2^k}$
9. $u_k = (-1)^k \frac{(k+1)x^k}{3^k}$	10. $u_k = (-1)^k \frac{x^k}{(k+1)4^k}$
11. $u_k = (-1)^k \frac{x^{2k}}{(2k+1)(2k+5)}$	12. $u_k = (-1)^k \frac{x^k}{(k+1)2^k}$
13. $u_k = (-1)^k \frac{x^k}{(2k+1)^2}$	14. $u_k = (-1)^k \frac{x^k}{(k+1)^2}$
15. $u_k = (-1)^{k+1} \frac{x^k}{(k+1)}$	16. $u_k = (-1)^{k+1} \frac{x^k (k-2)}{k}$
17. $u_k = (-1)^k \frac{x^{2k-1}}{2k-1}$	18. $u_k = (-1)^{k+1} \frac{x^k}{(k+1)^2}$
19. $u_k = (-1)^{k+1} \frac{(k+1)x^k}{4k}$	$20. u_k = (-1)^{k+1} \frac{kx^k}{2^k}$
21. $u_k = (-1)^k \frac{x^k}{(2k-1)(2k+1)}$	22. $u_k = (-1)^k \frac{(k+1)x^k}{k(k+2)}$
23. $u_k = (-1)^k \frac{x^k}{(k+1)(k+3)}$	24. $u_k = (-1)^k \frac{x^{2k-1}}{(2k-1)^2}$

25. $u_k = (-1)^{k+1} \frac{x^k}{(2k-1)^2}$	26. $u_k = (-1)^k \frac{x^k}{(2k-1)2k}$
27. $u_k = (-1)^k \frac{x^k}{(k+1)3^k}$	28. $u_k = (-1)^k \frac{(k+1)x^k}{4^k}$
29. $u_k = (-1)^k \frac{x^{2k+1}}{(2k+1)^2}$	$30. \ u_k = (-1)^k \frac{x^k}{k^2}$
31. $u_k = (-1)^k \frac{x^{k+1}}{2^k}$	32. $u_k = (-1)^{k+1} \frac{(k+1)x^k}{3k-1}$
33. $u_k = (-1)^{k+1} \frac{x^k}{(5k-1)3^k}$	34. $u_k = (-1)^k \frac{x^k}{(3k-2)^2}$
35. $u_k = (-1)^k \frac{x^{k+1}}{(k+1)2^{k+1}}$	36. $u_k = (-1)^{k+1} \frac{x^{2k}}{2^{k+1}}$

Вариант №_____

	1	
L		

1	
1	
1	

Лабораторная работа № 4	Фамилия И. О.	Дата	Подпись
Работу выполнил:	Студент		
Выполнение на ЭВМ:	Преподаватель		
Ручной счет:	Преподаватель		

Лабораторная работа № 5.

Одномерные массивы.

Задание. Написать программу на алгоритмическом языке с использованием одномерных массивов.

- 1. Даны массивы A(m) и B(m), $m \le 12$. Сформировать массив C по правилу: $C_1 = B_m + A_1$, $C_2 = B_{m-1} + A_2$, ..., $C_m = B_1 + A_m$. Найти сумму S элементов массива C. Вывести на печать массивы A, B, C и полученную сумму S.
- 2. Дан массив C(m), m≤15. Вывести на печать номера тех элементов массива, которые меньше последнего, и их число, а также вывести на печать элементы массива C.
- 3. Дан массив A(m), m≤15. Переписать элементы массива в обратном порядке и найти их сумму. Вывести на печать старый массив, новый массив и полученную сумму.
- 4. Дан массив C(m), $m \le 12$. Найти сумму и количество положительных элементов (>0), а также произведение и количество отрицательных элементов (<0). Вывести на печать полученные величины и массив C.
- 5. Дан массив A(m), m≤20. Вывести на печать сумму элементов массива, если она превосходит число 50, в противном случае вывести на печать исходный массив.
- 6. Дан массив D(m), m≤25. Из массива D переписать в массив Т элементы с нечетными номерами. Вывести на печать элементы массива D, массива T, сумму и количество элементов массива T.
- 7. Дан массив A(m), m≤12. Вывести на печать исходный массив, а также величину и номер его минимального положительного элемента.
- 8. Дан массив A(m), m≤20. Вывести на печать исходный массив, а также величину и номер его максимального отрицательного элемента.
- 9. Дан массив B(m), m≤15. Все элементы с четными номерами удвоить, а с нечетными заменить нулями. Вывести на печать исходный и переформированный массив.
- 10. Дан массив C(m), m≤17. Найти произведение всех элементов, предшествующих первой нулевой компоненте, и сумму последующих. Вывести на печать исходный массив и полученные произведение и сумму.
- 11. Дан массив B(m), m≤20. Все отрицательные элементы заменить нулями. Вывести на печать исходный массив, переформированный массив, а также сумму его элементов.

- 12. Дан массив P(m), m≤18. Вычислить величину K, равную количеству отрицательных элементов, заменяя эти элементы нулями. Вывести на печать исходный массив, преобразованный массив, а также величину K.
- 13. Дан массив A(m), m≤20. Найти сумму S его положительных элементов. Все отрицательные элементы удвоить. Вывести на печать исходный массив, переформированный массив и число S.
- 14. Даны массивы A(m) и Y(m), m≤16. Найти сумму S: $S=A_1Y_m+A_2Y_{m-1}+...+A_mY_1$. Если S<24 вывести ее на печать, в противном случае вывести на печать оба исходных массива.
- 15. Дан массив C(m), $m \le 17$. Вычислить сумму S элементов с нечетными номерами, удовлетворяющих условию $|C_i| < 1$. Вывести на печать исходный массив и полученную сумму S.
- 16. Дан массив A(m), $m \le 16$. Найти сумму S элементов, удовлетворяющих условию $A_i > 12$, и их количество K. Вывести на печать исходный массив и величины S и K.
- 17. Даны массивы A(m) и B(m), $m \le 12$. Сформировать массив C по правилу: $C_1 = A_1$, $C_2 = B_1$, $C_3 = A_2$, $C_4 = B_2$ и т.д. Вывести на печать исходные массивы A и B и сформированный массив C.
- 18. Дан массив P(m), m≤20. Определить количество положительных элементов К и квадрат их суммы S2. Вывести на печать исходный массив и величины К и S2.
- 19. Даны массивы A(m) и B(m), $m \le 10$. Сформировать массив C по правилу: $C_1 = A_1 B_1$, $C_2 = A_2 + B_2$, $C_3 = A_3 B_3$ и т.д. Вывести на печать исходные массивы A и B и сформированный массив C.
- 20. Дан массив P(m), m≤16. Определить количество положительных элементов KP, количество отрицательных элементов KM, количество нулевых элементов KZ. Вывести на печать исходный массив и величины KP, KM и KZ.
- 21. Дан массив A(m), m≤10. Определить номер NM первого отрицательного элемента и номер NZ первого нулевого элемента. Вывести на печать исходный массив и величины NM и NZ.
- 22. Дан массив P(m), m≤13. Исключить из него все отрицательные элементы, вычислить сумму S и количество K оставшихся элементов. Вывести на печать исходный массив и величины S и K.
- 23. Дан массив P(m), m≤17. Найти количество K всех элементов, предшествующих первой отрицательной компоненте, и их сумму S . Вывести на печать исходный массив и величины K и S .

- 24. Дан массив C(m), m≤20. Найти произведение P всех отрицательных элементов массива и их количество K. Вывести на печать исходный массив и величины P и K.
- 25. Дан массив C(m), m≤25. Сложить отдельно элементы с четными и нечетными номерами. Большую сумму и исходный массив вывести на печать.
- 26. Дан массив C(m), m≤30. Расположить его элементы так, чтобы в начале шли положительные, а потом все остальные. Исходный и переформированный массивы вывести на печать.
- 27. Даны массивы A(m) и B(m), $m \le 10$. Сформировать массив K по правилу: $K_i = -1$, если $A_i B_i < 0$ и $K_i = 1$, если $A_i B_i > 0$. Вывести на печать массивы A, B, и K.
- 28. Дан массив A(m), m≤15. Заменить нулем каждый третий элемент массива и вычислить сумму S оставшихся элементов. Вывести на печать исходный массив, переформированный и величину S.
- 29. Дан массив A(m), m≤10. Вывести на печать номера тех элементов, которые меньше числа X=13. Заменить эти элементы числом X. Вывести на печать исходный и переформированный массивы.
- 30. Даны массивы A(m) и B(m), $m \le 15$. Сформировать массив K по правилу: $K_i = 1$, если $A_i > B_i$ и $K_i = 0$, если $A_i < B_i$. Вывести на печать массивы A, B, u K.
- 31. Даны массивы A(m) и B(m), $m \le 10$. Сформировать массив T по правилу: $T_i = A_i/B_i$, если $B_i > 0$ и $T_i = A_i$ B_i , $B_i \le 0$. Вывести на печать массивы A_i , B_i , и T.
- 32. Дан массив A(m), m≤15. Заменить нулем каждый отрицательный элемент массива и вычислить сумму S и количество K оставшихся положительных элементов. Вывести на печать исходный и преобразованный массивы, а также величины S и K.
- 33. Даны массивы A(m) и B(m), $m \le 15$. Сформировать массив C по правилу: $C_i = A_i$, если $A_i > B_i$ и $C_i = B_i$, если $A_i \le B_i$. Вывести на печать массивы A, B, C.
- 34. Дан массив Q(m), m≤14. Найти количество K всех элементов, предшествующих первой компоненте, меньшей 10, и их сумму S . Вывести на печать исходный массив и величины K и S.
- 35. Даны массивы A(m) и B(m), $m \le 15$. Сформировать массив C по правилу: $C_1 = A_1$, $C_2 = -B_1$, $C_3 = A_2$, $C_4 = -B_2$ и т.д. Вывести на печать исходные массивы A и B и сформированный массив C.
- 36. Дан массив A(m), m≤10. Найти количество K всех элементов, предшествующих первой компоненте, большей 2 и их произведение P. Вывести на печать исходный массив и величины K и P.

Daphani Ji	Ba	риант	$N_{\underline{0}}$		
------------	----	-------	---------------------	--	--

\vdash	
\vdash	
\perp	

Лабораторная работа № 5	Фамилия И. О.	Дата	Подпись
Работу выполнил:	Студент		
Выполнение на ЭВМ:	Преподаватель		
Ручной счет:	Преподаватель		

Лабораторная работа № 6.

Вычисление скалярного произведения.

Задание. Написать программу вычисления скалярного произведения векторов.

Варианты заданий

Исходные данные:

17.

18.

s=(B(q-p-r),q)

s=(ABp-r,q)

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 2 & 1 \\ 3 & 2 & 0 \end{bmatrix} \quad B = \begin{bmatrix} 4 & 1 & 2 \\ 0 & 4 & 3 \\ 1 & 1 & 1 \end{bmatrix} \quad p = \begin{bmatrix} 0.1 \\ 1.7 \\ -1.5 \end{bmatrix} \quad q = \begin{bmatrix} -1.6 \\ 0.8 \\ 1.1 \end{bmatrix} \quad r = \begin{bmatrix} -0.7 \\ 1.3 \\ 0.2 \end{bmatrix}$$

$$1. \quad s = (Ap + q, q) \qquad 19. \quad s = (Ar - Bq, p)$$

$$2. \quad s = (Aq + p, Aq) \qquad 20. \quad s = (Ap, B(r - p))$$

$$3. \quad s = (B(p - r), r) \qquad 21. \quad s = (B(p - q), r)$$

$$4. \quad s = (Ar, Bp) \qquad 22. \quad s = (AAp + q, p)$$

$$5. \quad s = (Aq - Bp, r) \qquad 23. \quad s = (Br - Ap, q - p)$$

$$6. \quad s = (AAp, q) \qquad 24. \quad s = (Ar + p, p + q)$$

$$7. \quad s = (Aq + AAq, q) \qquad 25. \quad s = (B(r - q), p - r)$$

$$8. \quad s = (r + BBr, p) \qquad 26. \quad s = (Bq - Ar, Ar)$$

$$9. \quad s = (Ap, Br) \qquad 27. \quad s = (B(r + q + r), AAp)$$

$$10. \quad s = (r, A(r - q)) \qquad 28. \quad s = (A(p + q + r), AAr)$$

$$11. \quad s = (q, Aq + Bp) \qquad 29. \quad s = (B(r - p), BBr)$$

$$12. \quad s = (r + ABr, q) \qquad 30. \quad s = (BBr, Aq)$$

$$13. \quad s = (q - ABq, q) \qquad 31. \quad s = (Ap, B(q + r))$$

$$14. \quad s = (A(p + r + q), p) \qquad 32. \quad s = (BBq, r)$$

$$15. \quad s = (B(r - q), p) \qquad 33. \quad s = (Ap - r, p + r)$$

$$16. \quad s = (A(q - p), p) \qquad 34. \quad s = (BAp + q, p)$$

35. s=(r+AAp,p)

36. s=(B(p-r-q),r)

	Вариант №	
(

		Алгоритм решения задачи	
1. E	Вычисляем		
2. E	Вычисляем		
		Ручной счет	
1.			
2.			
3.			
4.			
т.			

5.				
6.				
Оті	вет: s =() =	

_	•		
-			
-			
-	-		
1			
-			
-			
\vdash			
1			
1			
<u>_</u>		<u> </u>	
1			
\vdash			
L			
_	I	-	

Лабораторная работа № 6 Фамилия И. О.		Дата	Подпись
Работу выполнил:	Студент		
Выполнение на ЭВМ:	Преподаватель		
Ручной счет:	Преподаватель		

Рабочая тетрадь для выполнения лабораторных и практических работ по дисциплине «Информатика» *Часть 1. Элементы программирования на алгоритмическом языке*

Лицензия ЛР № 020675 от 09.12.1997

 Подписано к печати: 01.09.2014
 Формат 60х84 1/8
 Печать офсетная

 И Объем 5 п.л.
 Тираж 1500
 Заказ