МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

«МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ СТРОИТЕЛЬНЫЙ УНИВЕРСИТЕТ»

(Национальный исследовательский университет)

Кафедра информатики и прикладной математики

РАБОЧАЯ ТЕТРАДЬ

для выполнения лабораторных и практических работ по информатике

Часть 2

«Элементы программирования и использование стандартного программного обеспечения»

Студент:	
Институт:	
Курс:	
Группа:	
Преподаватель:	

Результаты сдачи кон	птрольных мероприя	птий студентом	
Контрольное мероприятие	Преподаватель	Отметка о зачете	Подпись
Лабораторная работа 1			
Лабораторная работа 2			
Лабораторная работа 3			
Лабораторная работа 4			
Лабораторная работа 5			
Лабораторная работа 6			
Лабораторная работа 7			
Контрольное задание 1			
Контрольное задание 2			
ЗАЧЕТ			

Рабочая тетрадь предназначена для студентов МГСУ всех направлений подготовки, изучающих алгоритмический язык Фортран в курсе «Информатика». В рабочей тетради представлены семь лабораторных работ, как правило, выполняемых студентами в рамках изучения курса. Приведены формы для оформления результатов ручного счета, программ и результатов выполнения работы на ЭВМ.

Принятые в заданиях номера факультетов МГСУ

Ф-тет	ПГС	ТЭС	ГС	CT	ГСХ	МиАС	ЭУИС	ВиВ	ТиВ	ИФО	ИСТАС	ИАФ	
К	1	2	3	4	5	6	7	8	9	10	11	12	

Составители:

заведующий кафедрой, чл.-корр. РААСН, доктор технических наук П.А. Акимов профессор, чл.-корр. РААСН, доктор технических наук А.М. Белостоцкий профессор, кандидат технических наук Ж.И. Мсхалая профессор, кандидат физико-математических наук Ю.В. Осипов профессор, советник РААСН, доктор технических наук В.Н. Сидоров

Рецензент

профессор доктор физико-математических наук В.Н. Варапаев

Лабораторная работа № 1.

Решение системы линейных уравнений методом Гаусса

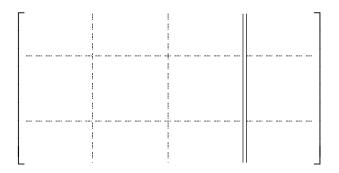
Задание. Решить заданную СЛАУ методом Гаусса.

Варианты задания

$$\begin{cases} x_1 + 5x_2 + x_3 & = S - G + K + 10 \\ 4x_1 - x_2 + x_3 & = S - G + 4K - 2 \\ Sx_1 + Gx_2 + 2(S + G + K)x_3 = 2 \cdot [(S - G) \cdot (S + G + K) + G] + K \cdot S \end{cases}$$

где K - номер факультета, G - номер группы, S - номер студента по журналу.

Выполнение лабораторной работы


Вариант:
$$S = ______$$
, $G = ______$, $K = ______$

Условие: исходная система уравнений:

$$\begin{cases} X_{1} & X_{2} & X_{3} = \\ X_{1} & X_{2} & X_{3} = \\ X_{1} & X_{2} & X_{3} = \end{cases}$$

Ручной счет

Расширенная матрица

Прямой ход

1-й шаг	2-й шаг	

Обратный ход

Система с треугольной матрицей:

$$\begin{cases} X_{1} & X_{2} & X_{3} = \\ X_{2} & X_{3} = \\ X_{3} = \\ X_{3} = \\ X_{4} & X_{5} = \\ X_{5} & X_{5} =$$

Вычисление неизвестных

из 3-го уравнения:	
из 2-го уравнения:	
из 1-го уравнения:	

Ombem.: $X_1 =$ _____; $X_2 =$ _____; $X_3 =$ _____.

Текст программы

Лабораторная работа № 1	Фамилия И. О.	Дата	Подпись
Работу выполнил:	Студент		
Выполнение на ЭВМ:	Преподаватель		
Ручной счет:	Преподаватель		

Лабораторная работа № 2.

Вычисление обратной матрицы и определителя.

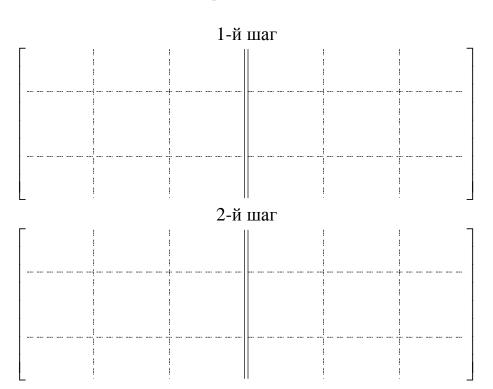
Задание. Для матрицы заданной СЛАУ вычислить обратную матрицу и определитель.

Варианты задания

$$\begin{cases} x_1 + 5x_2 + x_3 & = S - G + K + 10 \\ 4x_1 - x_2 + x_3 & = S - G + 4K - 2 \\ Sx_1 + Gx_2 + 2(S + G + K)x_3 = 2 \cdot [(S - G) \cdot (S + G + K) + G] + K \cdot S \end{cases}$$

где K - номер факультета, G - номер группы, S - номер студента по журналу.

Выполнение лабораторной работы


Вариант: $S = _____$, $G = _____$, $K = _____$

Условие: исходная матрица

Ручной счет

Расширенная матрица

Прямой ход

Определитель матрицы : Δ = _____

Обратная матрица

$$A^{-1} = \begin{pmatrix} \tilde{a}_{11} & \tilde{a}_{12} & \tilde{a}_{13} \\ \tilde{a}_{21} & \tilde{a}_{22} & \tilde{a}_{23} \\ \tilde{a}_{31} & \tilde{a}_{32} & \tilde{a}_{33} \end{pmatrix}$$

Вычисление элементов 1-го столбца обратной матрицы

 $\left\{ \begin{array}{ccc} & \widetilde{a}_{11} & \widetilde{a}_{21} & \widetilde{a}_{31} = \\ & \widetilde{a}_{21} & \widetilde{a}_{31} = \\ & \widetilde{a}_{31} = \end{array} \right.$

из 3-го уравнения:	
из 2-го уравнения:	
из 1-го уравнения:	

Вычисление элементов 2-го столбца обратной матрицы

$$\left\{egin{array}{cccc} \widetilde{a}_{12} & \widetilde{a}_{22} & \widetilde{a}_{32}=\ \widetilde{a}_{22} & \widetilde{a}_{32}=\ \widetilde{a}_{32}=\ \widetilde{a}_{32}=\ \end{array}
ight.$$

из 3-го уравнения:	
из 2-го уравнения:	
из 1-го уравнения:	

Вычисление элементов 3-го столбца обратной матрицы

из 3-го уравнения:	
из 2-го уравнения:	
из 1-го уравнения:	

$$\Delta =$$

Текст программы

Лабораторная работа № 2	Фамилия И. О.	Дата	Подпись
Работу выполнил:	Студент		
Выполнение на ЭВМ:	Преподаватель		
Ручной счет:	Преподаватель		

Лабораторная работа № 3.

Решение системы линейных уравнений итерационными методами

Задание. 1. Для заданной СЛАУ сделать по 3 шага по итерационным схемам методов простой итерации и Зейделя.

2. Решить СЛАУ на ЭВМ методом простой итерации или методом Зейделя (по указанию преподавателя).

Варианты задания

$$\begin{cases} x_1 + 5x_2 + x_3 & = S - G + K + 10 \\ 4x_1 - x_2 + x_3 & = S - G + 4K - 2 \\ Sx_1 + Gx_2 + 2(S + G + K)x_3 = 2 \cdot [(S - G) \cdot (S + G + K) + G] + K \cdot S \end{cases}$$

где K - номер факультета, G - номер группы, S - номер студента по журналу.

Выполнение лабораторной работы

Вариант:
$$S = ______$$
, $G = ______$, $K = _______$

Условие: исходная система уравнений:

$$\begin{cases} X_{1} & X_{2} & X_{3} = \\ X_{1} & X_{2} & X_{3} = \\ X_{1} & X_{2} & X_{3} = \end{cases}$$

Проверка условия сходимости

1-ое уравнение:	
2-ое уравнение:	
3-е уравнение:	

Преобразованная система уравнений:

X_1	X_2	$X_3 =$
X_1	X_2	$X_3 =$
X_{1}	X_2	$X_3 =$

Проверка условия сходимости

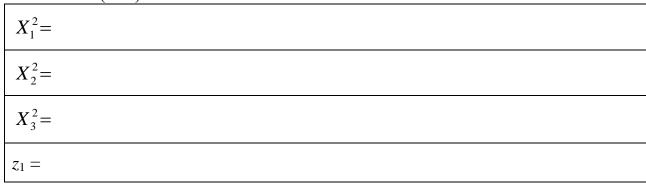
1-ое уравнение:	
2-ое уравнение:	
3-е уравнение:	

Ручной счет

а) Расчет по методу простой итерации.


Схема пересчета:

$$\begin{cases} X_{1}^{k+1} = \begin{pmatrix} & X_{2}^{k} & X_{3}^{k} \end{pmatrix} / \\ X_{2}^{k+1} = \begin{pmatrix} & X_{1}^{k} & X_{3}^{k} \end{pmatrix} / \\ X_{3}^{k+1} = \begin{pmatrix} & X_{1}^{k} & X_{3}^{k} \end{pmatrix} / \\ X_{1}^{k} & X_{2}^{k} \end{pmatrix} / \end{cases}$$


Начальное приближение:

$$X_1^0 = X_2^0 = X_3^0 = 0$$
.

1-й шаг (k=0)

2-й шаг (k=1)

3-й шаг (k=2)

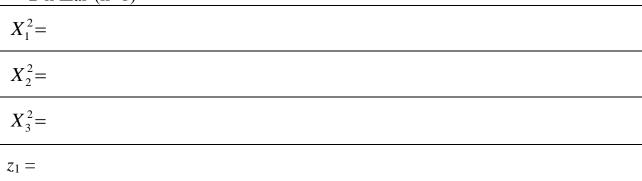
$$X_{1}^{3} =$$
 $X_{2}^{3} =$
 $X_{3}^{3} =$
 $z_{2} =$

Omsem: $X_1 = \underline{\hspace{1cm}}; \quad X_2 = \underline{\hspace{1cm}}; \quad X_3 = \underline{\hspace{1cm}}.$

б`	Расчет	ПО	методу	Зейделя.
•	,			301140111

Схема пересчета:

$$\begin{cases} X_1^{k+1} = \begin{pmatrix} & X_2^k & X_3^k \end{pmatrix} / \\ X_2^{k+1} = \begin{pmatrix} & X_1^{k+1} & X_3^k \end{pmatrix} / \\ X_3^{k+1} = \begin{pmatrix} & X_1^{k+1} & X_2^k \end{pmatrix} / \\ X_3^{k+1} = \begin{pmatrix} & X_1^{k+1} & X_2^{k+1} \end{pmatrix} / \\ \end{pmatrix}$$


Начальное приближение:

$$X_1^0 = X_2^0 = X_3^0 = 0$$
.

1-й шаг (k=0)

2-й шаг (k=1)

3-й шаг (k=2)

3 H Hui (K 2)		
$X_1^3 =$		
$X_{2}^{3} =$		
$X_3^3 =$		
$z_2 =$		

Omsem: $X_1 = \underline{\hspace{1cm}}; \quad X_2 = \underline{\hspace{1cm}}; \quad X_3 = \underline{\hspace{1cm}}.$

Текст программы (метод _____

Лабораторная работа № 3	Фамилия И. О.	Дата	Подпись
Работу выполнил:	Студент		
Выполнение на ЭВМ:	Преподаватель		
Ручной счет:	Преподаватель		

Лабораторная работа № 4.

Вычисление собственных значений и собственных векторов симметричной матрицы

Задание. Вычислить собственные значения и собственные векторы симметричной матрицы А на ЭВМ по стандартной подпрограмме NROOT и определить максимальное по модулю собственное число и соответствующий ему собственный вектор степенным методом (ручной счет).

Варианты задания

$$A = \frac{1}{6} \begin{bmatrix} p & m & 2S \\ m & 2p + S & m \\ 2S & m & p \end{bmatrix},$$

где

$$p = 2(G+S), m=-p+S,$$

S- номер студента по списку в журнале, G- номер группы.

Выполнение лабораторной работы

Вариант:
$$S = ______$$
, $G = _______$

Условие: исходная матрица

Ручной счет

Начальное приближение:
$$\bar{u}^{(0)} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$

0-й шаг:
$$\alpha_{\scriptscriptstyle 0}=$$

$$\overline{u}^{(1)} =$$

1-й шаг:
$$\alpha_{\scriptscriptstyle 1}$$
 = _____

2-й шаг:
$$\alpha_2 =$$

$$\overline{u}^{(3)} =$$

3-й шаг:

$$\alpha_3 =$$

Оценка погрешности: _____

Omeem:
$$\lambda_1 \approx \underline{\qquad}; \qquad \overline{x}^1 = \underline{\qquad}$$

$$\bar{x}^1 = \begin{bmatrix} & & & & & \\ & & & & & \\ & & & & & \end{bmatrix}$$

Текст программы

Лабораторная работа № 4	Фамилия И. О.	Дата	Подпись
Работу выполнил:	Студент		
Выполнение на ЭВМ:	Преподаватель		
Ручной счет:	Преподаватель		

Лабораторная работа № 5.

Численное интегрирование

Задание. 1. Вычислить определенный интеграл от полинома третьей степени:

$$s = \int_{0}^{3} f(x) dx$$

вручную по формулам методов прямоугольников, трапеций, Симпсона, приняв n=4.

2. Вычислить заданный интеграл на ЭВМ по стандартной подпрограмме QATR.

Варианты задания

$$f(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3,$$

где

$$a_0 = -\widetilde{S}(\widetilde{G}^2 + \widetilde{S}^2), \quad a_1 = (\widetilde{G} + \widetilde{S})^2, \quad a_2 = -(2\widetilde{G} + \widetilde{S}), \quad a_3 = 1,$$

 $\widetilde{G} = \frac{G}{10}, \quad \widetilde{S} = \frac{S}{10},$

S - номер студента по журналу, G- номер группы.

Выполнение лабораторной работы

Вариант: $S = ______$, $G = _______$

Условие: вычислить интеграл $\int_{0}^{3} f(x) dx$, где f(x) =_______

Ручной счет n=4; h=______

а) Вычисление интеграла методом прямоугольников

i	\mathcal{X}_{i}	\mathcal{Y}_{i}
1		
2		
3		
4		

 $\int_{0}^{3} f(x)dx \approx \underline{\hspace{1cm}}$

б) Вычисление интеграла методом трапеций

i	\mathcal{X}_{i}	\mathcal{Y}_{i}
0		
1		
2		
3		
4		

 $\int_{0}^{3} f(x)dx \approx \underline{\qquad}$ Omsem: $\int_{0}^{3} f(x)dx \approx \underline{\qquad}$

в) Вычисление интеграла методом Симпсона

I	\mathcal{X}_{i}	Уi
0		
1		
2		
3		
4		

 $\int_{0}^{3} f(x)dx \approx \underline{\qquad}$ Omeem: $\int_{0}^{3} f(x)dx \approx \underline{\qquad}$

Текст программы

-		
-		
-		
\vdash		
1		
L		
\vdash		
\vdash		
1		
_	1	

Лабораторная работа №5	Фамилия И. О.	Дата	Подпись
Работу выполнил:	Студент		
Выполнение на ЭВМ:	Преподаватель		
Ручной счет:	Преподаватель		

Лабораторная работа № 6.

Вычисление корня нелинейного уравнения

- **Задание.** 1. Вычислить корень полинома на отрезке $x \in [0;3]$ методом половинного деления и методом Ньютона вручную. В критериях окончания счета для обоих методов принять $\varepsilon = 0.1$.
- 2. Вычислить корень полинома на отрезке $x \in [0;3]$ на ЭВМ методом половинного деления или методом Ньютона (по указанию преподавателя). В критериях окончания счета на ЭВМ для обоих методов принять $\varepsilon = 0.001$.

Варианты задания

$$f(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3,$$

где

$$a_0 = -\widetilde{S}(\widetilde{G}^2 + \widetilde{S}^2), \quad a_1 = (\widetilde{G} + \widetilde{S})^2, \quad a_2 = -(2\widetilde{G} + \widetilde{S}), \quad a_3 = 1,$$

 $\widetilde{G} = \frac{G}{10}, \quad \widetilde{S} = \frac{S}{10},$

S - номер студента по журналу, G- номер группы.

Выполнение лабораторной работы

Вариант: S=,	G=	
f(x) =	на отрезке	

Ручной счет.

а) Вычисление корня методом половинного деления.

•		merenne no più mero dem notro più moro detternime								
	k	а	b	C=(a+b)/2	f(a)	f(b)	f(c)	b-a		
	0									
	1									
	2									
	3									
	4									
	5									

Ответ		r≈
Ombem	•	<i>x</i> ~

ნ)	Вычисление	корня	методом	Ньютона.
----	------------	-------	---------	----------

f(x)=	_;	^c '((x)) :	= ,	X 0	=
-------	----	-----------------	-----	-----	------------	------------	---

k	X _k	$f(x_k)$	$f'(x_k)$	X _{k+1}	X _{k+1} - X _k
0					
1					
2					
3					
4				_	
5					

<i>Ombem:</i> $x \approx 1$	
-----------------------------	--

Текст программы

_	1	
-		
<u></u>		
<u></u>		

_	1	
\vdash		
-		
-		
1		
1		
—		
1		
1		
\vdash		
1		
1		

Лабораторная работа №6	Фамилия И. О.	Дата	Подпись
Работу выполнил:	Студент		
Выполнение на ЭВМ:	Преподаватель		
Ручной счет:	Преподаватель		

Лабораторная работа № 7.

Построение прямой по методу наименьших квадратов

Задание. Построить оптимальную прямую, наименее удаленную от заданных точек. Для расчета на ЭВМ следует взять n=12 точек. Для ручного счета n=4 точки. Точки берутся из таблицы подряд, начиная с номера S студента по журналу.

Варианты задания

N	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
x_i	2	3	3	5	6	7	13	13	11	10	9	8	2	2	4	5	6	7	8	8	3	9	11
y_i	1	2	3	4	7	7	15	17	11.5	10	8	6.5	1	3	4	5.5	6	6.5	7	9	3	8	10

N	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43
x_i	13	14	14	8	5	7	12	2	1	8	15	12	12	7	5	9	6	7	7	5
y_i	12	13	14	9	6	7	11	1	1	7	15	13	12	6.5	5	8	6	6.5	8	4

Выполнение лабораторной работы

Вариант: $S = ______$, $G = _______$

Условие:

i	1	2	3	4	5	6	7	8	9	10	11	12
χ_i												
y_i												

Ручной счет

i	χ_i	\mathcal{Y}_i	x_i^2	$x_i y_i$
1				
2				
3				
4				
Σ				

Получившаяся система уравнений относительно коэффициентов искомой прямой a и b :

$$\begin{cases}
a + b = \\
a + b =
\end{cases}$$

$$\Delta =$$

Ответ: Искомая прямая : y =______.

Текст программы

График оптимальной прямой и экспериментальные точки

		 	 		 		 								r
															<u> </u>
															[
		 	 		 		 								[
		 	 		 		 								<u> </u>
		 	 		 		 								ļ
															<u> </u>
		 	 		 		 								Ĺ
} 		 	 		 		 								
 		 	 		 	 	 ļ	 			ļ		ļ	 	Ĺ
															<u> </u>
															ĺ
		 	 		 		 								[
 		 	 		 		 						 		
		 	 		 		 								ļ
			 		 		 								Ĺ
[[
		 	 		 		 								 !
		 	 		 		 								ŀ
ļ		 	 		 		 	<u> </u>					ļ		ļ
<u> </u>	<u> </u>														<u>L</u>
													 -		[
		 	 		 		 								ļ
<u>i</u>		 <u> </u>	 L	<u> </u>	 L	<u> </u>	 L	<u>L</u>	L	L	<u> </u>	L	<u> </u>	L	Ĺ

Лабораторная работа №7	Фамилия И. О.	Дата	Подпись
Работу выполнил:	Студент		
Выполнение на ЭВМ:	Преподаватель		
Ручной счет:	Преподаватель		

Рабочая тетрадь для выполнения лабораторных и практических работ по дисциплине «Информатика»

Часть 2. Элементы программирования и использование стандартного программного обеспечения

Лицензия ЛР № 020675 от 09.12.1997

Подписан	но к печати: 01.09.2014	Формат 60х84 1/8	Печать офсетная
И-	Объем 5 п.л.	Тираж 1500	Заказ