МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

«МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ СТРОИТЕЛЬНЫЙ УНИВЕРСИТЕТ»

(Национальный исследовательский университет)

Кафедра информатики и прикладной математики

РАБОЧАЯ ТЕТРАДЬ

для выполнения лабораторных и практических работ по дисциплине «Строительная информатика»

«Численные методы, алгоритмы и программы решения задач на ЭВМ»

Студент:	 	
Институт:	 	
Курс:	 	
Группа:	 	
Преподаватель:		

Москва 2014

Результаты сдачи кон	трольных мероприя	тий студентом	
Контрольное мероприятие	Преподаватель	Отметка о зачете	Подпись
Лабораторная работа 1			
Лабораторная работа 2			
Лабораторная работа 3			
Лабораторная работа 4			
Лабораторная работа 5			
Лабораторная работа 6			
Лабораторная работа 7			
Контрольное задание 1			
Контрольное задание 2			
ЗАЧЕТ			

Рабочая тетрадь предназначена для студентов факультетов МГСУ, изучающих курс «Строительная информатика». В рабочей тетради представлены семь лабораторных работ, как правило, выполняемых студентами в третьем семестре. Приведены формы для оформления результатов ручного счета, программ и результатов выполнения работы на ЭВМ.

Принятые в заданиях номера факультетов МГСУ

Ф-тет	ПГС	ТЭС	ГСС	CT	ГСХ	МиАС	ЭУМС	ВиВ	ТиВ	ИФО	ИСТАС	ИАФ
К	1	2	3	4	5	6	7	8	9	10	11	12

Во всех лабораторных работах G - номер группы, S - номер студента по журналу.

Составители:

заведующий кафедрой, чл.-корр. РААСН, доктор технических наук $\Pi.A.$ Акимов профессор, чл.-корр. РААСН, доктор технических наук A.M. Белостойкий доцент, кандидат технических наук T.Б. Кайтуков профессор, кандидат технических наук W.M. Мехалая профессор, кандидат физико-математических наук W.B. Осилов профессор, советник РААСН, доктор технических наук W.B. Сидоров

Рецензент

профессор доктор физико-математических наук В.Н. Варапаев

Лабораторная работа № 1.

Решение краевой задачи методом конечных разностей

Задание.	Решить краевую	задачу	методом	конечных	разностей.
Постанов	вка задачи:				

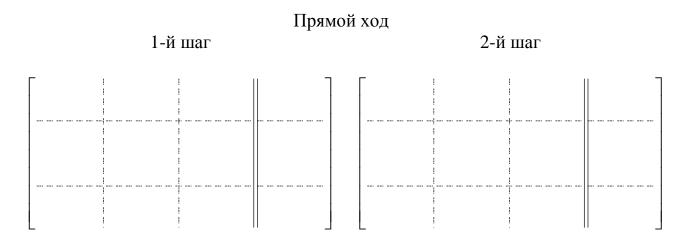
$$\begin{cases} y'' + p(x)y = f(x); & x \in (0, l) \\ y(0) = g_1 \\ y(l) = g_2 \end{cases} - \kappa paeвые \quad y c no в u s$$

$$l=$$
____, $g_1=$ ____, $g_2=$ ____, $c=$ ____
 $p(x)=$ _____
 $f(x)=$

- 1. Решить задачу на ЭВМ (N=__).
- 2. Решить задачу вручную (N=__).

Выполнение лабораторной работы

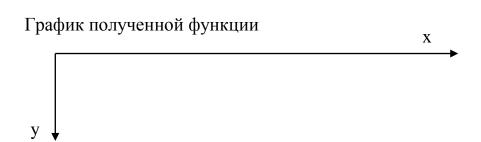
Вариант:
$$S = _____$$
, $G = _____$, $K = _____$


Разностная схема (расположение точек разбиения при N=__ с нумерацией)

Текст программы

	·

	График получ	енной функции Х	
y			
Разностная схо	<i>Ручной сч</i> ема (расположение	ет (N=) е точек разбиения	н при N= с
$i=2 x_2 = p_2 =$		$f_2=$	
	онечно-разностны		
Или, исключая $y_1 = y_1$	y ₅ =0,		
		подом Гаусса ная матрица	


Обратный ход Система с треугольной матрицей:

$$\begin{cases} y_1 & y_2 & y_3 &= \\ y_2 & y_3 &= \\ y_3 &= \end{cases}$$

Вычисление неизвестных

Из 3-го уравнения:	
Из 2-го уравнения:	
Из 1-го уравнения:	

Ответ:

Лабораторная работа № 1	Фамилия И. О.	Дата	Подпись
Работу выполнил:	Студент		
Выполнение на ЭВМ:	Преподаватель		
Ручной счет:	Преподаватель		

Лабораторная работа № 2.

Устойчивость сжатого стержня

Задание.	Решить	задачу	определения	критической	силы	И	формы
потери устойчи	вости дл	я сжатоі	го стержня мет	годом конечных	к разно	сте	ей.

Постановка задачи:

$$\begin{cases}
-Ry'' = Py, & x \in (0,l) \\
y(0) = 0 \\
y(l) = 0
\end{cases}$$

- 1. Решить задачу на ЭВМ (N=__).
- 2. Решить задачу вручную (N=__).

Выполнение лабораторной работы (N=__)

Bapuaht:
$$S =$$
_______ , $G =$ ______ , $K =$ ______

Разностная схема (расположение точек разбиения при N=__ с нумерацией)

_	

Текст программы

<u> </u>	•	·

Конечно-разностные уравнения

$$\Rightarrow \bigg\{$$

Матричный вид A = pB = y

$$A = \begin{bmatrix} \\ \\ \end{bmatrix}, \quad B = \begin{bmatrix} \\ \\ \\ \end{bmatrix}, \quad \overline{y} = \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix}.$$

Итерационный процесс

$$\widetilde{A} = A^{-1}B = \begin{bmatrix} \\ \\ \\ \overline{v}^{(0)} = (1,1,1); \end{bmatrix} = \begin{bmatrix} \\ \\ \\ \end{bmatrix}$$

$$\underline{\mathbf{k}=0:} \ \lambda^{(0)} = \left| v^{(0)} \right| =$$

$$\bar{y}^{(0)} = \frac{1}{\lambda^{(0)}} \bar{v}^{(0)} =$$

$$\overline{v}^{(1)} = \widetilde{A}\overline{y}^{(0)} = \begin{bmatrix} & & \\ & & \end{bmatrix} = \begin{bmatrix} & & \\ & & \end{bmatrix}$$

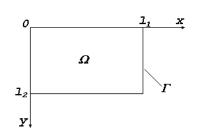
$$\underline{\mathbf{k}=1:} \ \lambda^{(1)} = \left| v^{(1)} \right| =$$

$$\overline{y}^{(1)} = \frac{1}{\lambda^{(1)}} \overline{v}^{(1)} =$$

$$\bar{v}^{(2)} = \tilde{A}\bar{y}^{(1)} = \begin{bmatrix} \\ \\ \end{bmatrix} = \begin{bmatrix} \\ \\ \end{bmatrix} = \begin{bmatrix} \\ \\ \end{bmatrix} \\
\frac{k=2:}{\lambda^{(2)}} \lambda^{(2)} = |v^{(2)}| = \\
\bar{v}^{(2)} = \frac{1}{\lambda^{(2)}} \bar{v}^{(2)} = \\
\bar{v}^{(3)} = \tilde{A}\bar{y}^{(2)} = \begin{bmatrix} \\ \\ \end{bmatrix} = \begin{bmatrix} \\ \\ \end{bmatrix} = \begin{bmatrix} \\ \\ \end{bmatrix} \\
\frac{k=3:}{\lambda^{(3)}} \lambda^{(3)} = |v^{(3)}| = \\
\bar{y}^{(3)} = \frac{1}{\lambda^{(3)}} \bar{v}^{(3)} = \\$$
Other: Pmin=1/\(\lambda = \frac{\bar{v}}{y=()} \)

График формы потери устойчивости при минимальной критической силе

Лабораторная работа № 2	Фамилия И. О.	Дата	Подпись
Работу выполнил:	Студент		
Выполнение на ЭВМ:	Преподаватель		
Ручной счет:	Преподаватель		


Лабораторная работа № 3.

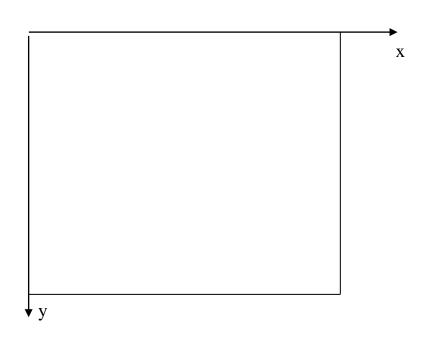
Краевая задача Дирихле для уравнения Пуассона

Задание. Решить задачу Дирихле для уравнения Пуассона в прямоугольной области методом конечный разностей.

Постановка задачи:

$$\begin{cases} \nabla^{2}U = F(x, y), & \Omega = (0 < x < l_{1}, 0 < y < l_{2}) \\ U_{\Gamma} = \varphi(x, y) = \begin{cases} \varphi_{1}(y), & x = 0 \\ \varphi_{2}(y), & x = l_{1} \\ \varphi_{3}(x), & y = 0 \\ \varphi_{4}(x), & y = l_{2} \end{cases}$$

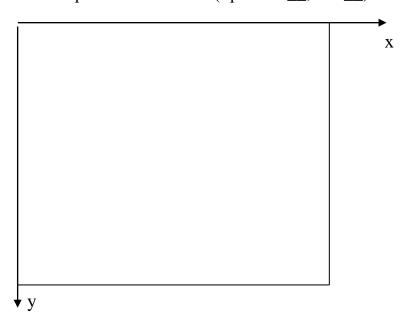
F(x,y)=


краевые условия: при x=0 и $x=l_1$ $U=\varphi_1(y)=\varphi_2(y)=$ при y=0 и $y=l_2$ $U=\varphi_3(x)=\varphi_4(x)=$

$$l_1=1$$
, $l_2=1$.

- 1. Решить задачу на ЭВМ (N1=__, N2=__).
- 2. Решить задачу вручную (N1=__,N2=__) (ограничиться при решении разностной системы уравнений методом Зейделя тремя итерациями).

Выполнение лабораторной работы


Вариант: S=______ , G=_____ , K=_____ Конечно-разностная сетка (при N1=__,N2=__)

Текст программы

Результаты счета

$$h_1=1/4=0.25, h_2=1/2=0.5$$

$\varphi_3(0)=$	$\varphi_1(0)=$
$\varphi_3(0.25)=$	$\varphi_1(0.5)=$
$\varphi_3(0.5)=$	$\varphi_1(1)=$
$\varphi_3(0.75)=$	
$\varphi_3(1)=$	

Формула итераций:
$$u_{i,j}^{(k)} = \frac{\left(\frac{u_{i-1,j}^{(k)} + u_{i+1,j}^{(k-1)}}{h_1^2} + \frac{u_{i,j-1}^{(k)} + u_{i,j+1}^{(k-1)}}{h_2^2} - f_{ij}\right)}{\left(\frac{2}{h_1^2} + \frac{2}{h_2^2}\right)}$$

$$h_1^2 = 0.25^2 = 0.0625; h_2^2 = 0.5^2 = 0.25; \frac{2}{h_1^2} = 32; \quad \frac{2}{h_2^2} = 8;$$

<u>k=0:</u> $u_{1,1}^{(0)} = u_{2,1}^{(0)} = u_{3,1}^{(0)} = 0$ (Начальные значения);

k=1: i=1, j=1,

$$u_{1,1}^{(1)} = \frac{u_{0,1}^{(1)} + u_{2,1}^{(0)}}{0.0625} + \frac{u_{1,0}^{(1)} + u_{1,2}^{(0)}}{0.25} - f_{11}}{40} = \frac{0.0625}{40} + \frac{0.25}{0.25} - \frac{1}{40} = \frac{0.0625}{0.25} + \frac{0.0625}{0.25} - \frac{0.0625}{0.25} - \frac{1}{40} = \frac{0.0625}{0.25} + \frac{0.0625}{0.25} - \frac{0.06$$

$$u_{2,1}^{(1)} = \frac{u_{1,1}^{(1)} + u_{3,1}^{(0)}}{\frac{0.0625}{40}} + \frac{u_{2,0}^{(1)} + u_{2,2}^{(0)}}{\frac{0.25}{40}} = \frac{0.0625}{40} + \frac{0.25}{0.25} - \frac{0.0625}{40}$$

$$i=3, j=1,$$

$$u_{3,1}^{(1)} = \frac{u_{2,1}^{(1)} + u_{4,1}^{(0)}}{0.0625} + \frac{u_{3,0}^{(1)} + u_{3,2}^{(0)}}{0.25} - f_{31}}{40} = \frac{0.0625}{40} + \frac{0.25}{0.25} - \frac{0.0625}{0.25}$$

$$k=2: i=1, j=1,$$

$$u_{1,1}^{(2)} = \frac{u_{0,1}^{(2)} + u_{2,1}^{(1)}}{0.0625} + \frac{u_{1,0}^{(2)} + u_{1,2}^{(1)}}{0.25} - f_{11}}{40} = \frac{0.0625}{40} + \frac{0.25}{0.25} - \frac{1}{10}$$

$$i=2, j=1,$$

$$u_{2,1}^{(2)} = \frac{u_{1,1}^{(2)} + u_{3,1}^{(1)}}{\frac{0.0625}{40}} + \frac{u_{2,0}^{(2)} + u_{2,2}^{(1)}}{\frac{0.25}{40}} - f_{21} = \frac{0.0625}{40} + \frac{0.25}{0.25} - \frac{0.0625}{40}$$

$$\frac{\mathbf{k=3:}}{u_{1,1}^{(3)}} = \frac{u_{0,1}^{(3)} + u_{2,1}^{(2)}}{0.0625} + \frac{u_{1,0}^{(3)} + u_{1,2}^{(2)}}{0.25} - f_{11}}{40} = \frac{0.0625}{40} + \frac{0.25}{0.25} - \frac{1}{0.25}$$

$$i=2, j=1,$$

$$u_{2,1}^{(3)} = \frac{u_{1,1}^{(3)} + u_{3,1}^{(2)}}{0.0625} + \frac{u_{2,0}^{(3)} + u_{2,2}^{(2)}}{0.25} - f_{21}}{40} = \frac{0.0625}{40} + \frac{0.25}{0.25} - \frac{1}{0.25}$$

$$i=3, j=1,$$

$$u_{3,1}^{(3)} = \frac{u_{2,1}^{(3)} + u_{4,1}^{(2)}}{0.0625} + \frac{u_{3,0}^{(3)} + u_{3,2}^{(2)}}{0.25} - f_{31}}{40} = \frac{0.0625}{0.0625} + \frac{1}{0.25} - \frac{1}{0.25}$$

Ответ:

Лабораторная работа № 3	Фамилия И. О.	Дата	Подпись
Работу выполнил:	Студент		
Выполнение на ЭВМ:	Преподаватель		
Ручной счет:	Преподаватель		

Лабораторная работа № 4.

Задача об изгибе консоли (задача Коши)

Задание. Определить прогиб консоли (решить задачу Коши) методом Эйлера.

Исходная постановка задачи:

$$\begin{cases} y''(x) = \frac{M(x)}{EJ(x)} \sqrt{[1 + (y'(x))^2]^3}, & x > 0 \\ y(0) = 0 \\ y'(0) = 0 \end{cases} - начальные \quad условия \end{cases}$$

EJ(x) - жесткость балки , M(x) - изгибающий момент в балке - заданные функции .

y(x) - прогиб балки: y(x) = ?

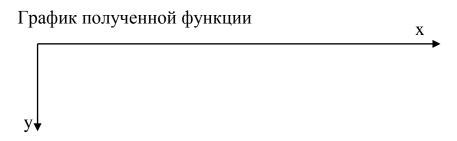
Постановка исходной задачи в виде системы дифференциальных уравнений 1-го порядка:

$$\begin{cases} z'(x) = f(x, z) \\ y'(x) = z(x) \\ y(0) = 0 \\ z(0) = 0 \end{cases} x > 0$$

гле

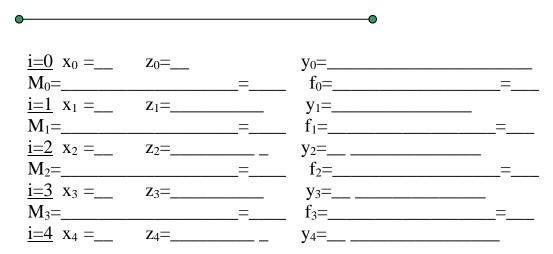
$$f(x,z) = \frac{M(x)}{EJ(x)} \sqrt{(1+z^2(x))^3}$$
.

Для решения применить следующий вариант метода Эйлера ,т.е.

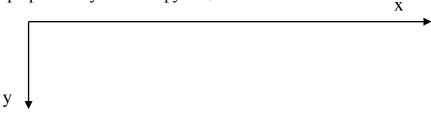

$$\begin{cases} y_0 = 0 \\ z_0 = 0 \\ z_{i+1} = z_i + h \cdot f(x_i, z_i) , i = 0,1,..., N-1 \\ y_{i+1} = y_i + \frac{h}{2} \cdot (z_i + z_{i+1}) \end{cases}$$

і- номер точки разбиения в разностной схеме.

- 3. Решить задачу на ЭВМ (N=__).
- 4. Решить задачу вручную (N=__).


Выполнение лабораторной работы

Вариант: $S=$, $G=$, $K=$
Разностная схема (расположение точек разбиения при N= с нумерацией)
Текст программы



Ручной счет (N=___)

Разностная схема (расположение точек разбиения при $N=__$ с нумерацией)

График полученной функции

Лабораторная работа № 4	Фамилия И. О.	Дата	Подпись
Работу выполнил:	Студент		
Выполнение на ЭВМ:	Преподаватель		
Ручной счет:	Преподаватель		

Лабораторная работа № 5.

Задача теплопроводности

Задание. Вычислить методом конечных разностей по явной схеме распределение температуры по толщине стены в соответствии с задачей, изложенной в теоретической части.

Исходная постановка задачи:

$$\begin{cases} \frac{\partial u}{\partial t} = \alpha \frac{\partial^2 u}{\partial x^2} + f(x,t), & 0 < x < l, \quad t > 0 \\ u(0,t) = \varphi_0(t) \\ u(l,t) = \varphi_l(t) \\ u(x,0) = \psi(x) \end{cases}$$

$$f(x,t) = \underline{}; \quad \alpha = \underline{}; \quad \varphi_0(t) = \underline{}; \quad \varphi_l(t) = \underline{};$$

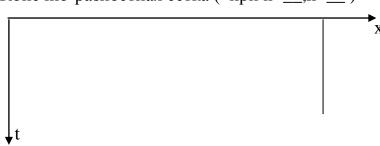
$$\psi(x) = \underline{};$$

$$l = \underline{};$$

Для обеспечения устойчивости счета принять $\tau = \frac{h^2}{2a}$, где h- шаг по оси x, т-шаг по оси t.

Применить форму счета по явной схеме:

i=1,...,n-1 k=0,1,2,3,...


1.Решить задачу на ЭВМ для n=__ точек по координате x и k=__ шагов по времени (координата t).

Представить результаты счета для n=_ и k=__ с распечаткой результатов при следующих k: k=0, 1, 10, 20, 30, ..., 90, 100,...

2. Решить задачу вручную для n=__, k=0,1,2,...

Выполнение лабораторной работы

Вариант: $S = ______$, $G = ______$, $K = ______$ Конечно-разностная сетка (при n=__,k=__)

Текст программы

Ручной счет

Конечно-разностная сетка (при N=__,k=__ ,h=___, τ =___)

k	t	u_0	u_1	u_2	u_3	u_4
0						
1						
2						
3						

Лабораторная работа № 5	Фамилия И. О.	Дата	Подпись
Работу выполнил:	Студент		
Выполнение на ЭВМ:	Преподаватель		
Ручной счет:	Преподаватель		

Лабораторная работа № 6.

Задача линейного программирования

Задание. Решить задачу линейного программирования.

Постановка задачи: Найти максимум и точку максимума функции Z

$$Z = x_1 + x_2$$

при ограничениях

$$\begin{cases} \leq 0 \\ \leq 0 \\ \leq 0 \\ x_1 \geq 0 \\ x_2 \geq 0 \end{cases}$$

- 1. Решить задачу на ЭВМ с помощью стандартной подпрограммы SIMPLPR.
- 2. Решить задачу вручную геометрическим методом в соответствии с примером в теоретической части.

Выполнение лабораторной работы

Вариант:
$$S = ______$$
, $G = ______$, $K = ______$

Матричная формулировка

Найти max z=(\overline{c} , \overline{x}) при ограничениях A $\overline{x} \le \overline{b}$ и дополнительном условии $\overline{x} \ge 0$

где
$$\bar{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$
 $\bar{c} = \begin{pmatrix} ---- \\ --- \end{pmatrix}$ $A = \begin{bmatrix} ----- \\ ---- \end{bmatrix}$ $\bar{b} = \begin{pmatrix} ----- \\ ---- \end{bmatrix}$

Текст программы

Ручной счет

Граф	рическое решение зада	чи (построение м	иногоугольника	ограничений,
прям	юй z=0 и определение	точки максимум	(a).	

Ответ:

Лабораторная работа № 6	Фамилия И. О.	Дата	Подпись
Работу выполнил:	Студент		
Выполнение на ЭВМ:	Преподаватель		
Ручной счет:	Преподаватель		

Лабораторная работа № 7.

Метод конечных элементов (МКЭ)

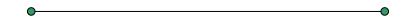
Задание. Решить задачу о изгибе растянуто-изогнутой балки методом конечных элементов.

Исходная постановка задачи:

Найти функцию у(х) при которой функционал

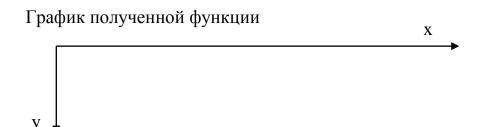
$$\Phi(y(x)) = \frac{1}{2} \int_{0}^{l} (EJ(y'(x))^{2} + py(x)^{2}) dx - \int_{0}^{l} M(x)y(x) dx$$

принимает минимальной значение.


$$EJ=$$
__ $P=$ ___ $l=$ __
 $M(x)=$ _____

Составить конечно-элементную систему уравнений (матрицу жесткости и вектор нагрузки) и решить полученную систему.

- 1. Решить задачу на ЭВМ для $N=_$ точек (N-1 конечных элементов).
- Представить результаты счета для N=__, то есть __ конечных элементов.
 - 2. Решить задачу вручную для N=__, т.е. ___ конечных элементов.


Выполнение лабораторной работы

Конечно-элементная схема (расположение элементов при $N=__$ с нумерацией)

Текст программы

l		
ĺ		

Ручной счет (N=___)

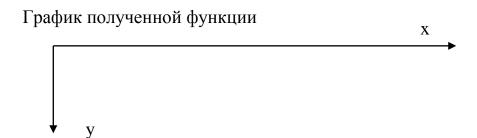
Конечно-элементная схема (расположение элементов при $N=__$ с нумерацией)

Локальные матрицы жесткости:

$$i = 1,2,3$$

Локальные векторы нагрузки

$$M_2 =$$


$$M_3 =$$
 $=$ $=$ p_1 $(--)$ p_2 $(--)$ p_3 p_1 $(--)$

Общие матрица жесткости и вектор нагрузки без учета закреплений

С учетом закреплений

Решение системы уравнений $K = \overline{R}$

Ответ:

Лабораторная работа № 7	Фамилия И. О.	Дата	Подпись
Работу выполнил:	Студент		
Выполнение на ЭВМ:	Преподаватель		
Ручной счет:	Преподаватель		

Рабочая тетрадь для выполнения лабораторных и практических работ по строительной информатике.

Численные методы, алгоритмы и программы решения задач на ЭВМ

Лицензия ЛР № 020675 от 09.12.1997

Подписан	о к печати 01.09.2014	Формат 60х84 1/16	Печать офсетная
И-	Объем 2 п.л.	Тираж 2500	Заказ